optimization.multiobjective
- optimization.multiobjective.paretoFront(P_matrix)
Function
paretoFront()- Parameters:
P_matrix – P_matrix
- Returns:
P_matrix
- Returns:
idxs
Filters a set of points P according to Pareto dominance, i.e., points that are dominated (both weakly and strongly) are filtered.
Inputs:
- P_matrixN-by-D matrix, where N is the number of points and D is the
number of elements (objectives) of each point.
Outputs:
P_matrix : Pareto-filtered P_matrix
idxs : indices of the non-dominated solutions
Example:
p = [1 1 1; 2 0 1; 2 -1 1; 1, 1, 0]; [f, idxs] = paretoFront(p) f = [1 1 1; 2 0 1] idxs = [1; 2]
- optimization.multiobjective.pareto_curve_heuristics(r1, r2)
Function
pareto_curve_heuristics()- Parameters:
r1 – r1
r2 – r2
- Returns:
Figure handles
- optimization.multiobjective.damping_vs_reactive(p, b)
Function
damping_vs_reactive()- Parameters:
p – Parameter struct
b – Design variable bounds struct
- Returns:
r1
- Returns:
r2
- optimization.multiobjective.pareto_search(p, b, filename_uuid)
Function
pareto_search()- Parameters:
p – Parameter struct
b – Design variable bounds struct
filename_uuid – filename_uuid
- Returns:
Design variable vector
- Returns:
fval
- Returns:
residuals
- Returns:
tol
- Returns:
Parameter struct