optimization

optimization.find_nominal_inputs(b, p)

Function find_nominal_inputs()

Parameters:
  • b – Design variable bounds struct

  • p – Parameter struct

Returns:

F_max_nom

optimization.gradient_optim(x0_input, p, b, which_objs, plotfn, disp_on)

Function gradient_optim()

Parameters:
  • x0_input – x0_input

  • p – Parameter struct

  • b – Design variable bounds struct

  • which_objs – which_objs

  • plotfn – plotfn

  • disp_on – disp_on

Returns:

Xs_opt

Returns:

objs_opt

Returns:

Optimization output flags

Returns:

probs

Returns:

lambdas

Returns:

grads

Returns:

hesses

Returns:

vals

optimization.run_solver(prob, obj, x0, opts, idxs, filename_uuid)

Function run_solver()

Parameters:
  • prob – prob

  • obj – Objective function value

  • x0 – Initial design variable vector

  • opts – opts

  • idxs – idxs

  • filename_uuid – filename_uuid

Returns:

Optimal design variables

Returns:

obj_opt

Returns:

Optimization output flag

Returns:

output

Returns:

$\lambda$

Returns:

grad

Returns:

hess

Returns:

problem

optimization.max_avg_power(p, b, x0_vec)

Function max_avg_power()

Parameters:
  • p – Parameter struct

  • b – Design variable bounds struct

  • x0_vec – x0_vec

Returns:

X_opt_2

Returns:

val_2

Returns:

flag_2

Returns:

P_elec_2

optimization.compare_run(p, b)

Function compare_run()

Parameters:
  • p – Parameter struct

  • b – Design variable bounds struct

Returns:

Design variable vector

Returns:

vals

Modules

optimization.multiobjective

optimization.sensitivities