optimization.sensitivities
- optimization.sensitivities.location_post_process(p, b, flux, BW, storm, depths, locs, most_common_wave, X_opts, obj_opts, flags)
Function
location_post_process()- Parameters:
p – Parameter struct
b – Design variable bounds struct
flux – flux
BW – BW
storm – storm
depths – depths
locs – locs
most_common_wave – most_common_wave
X_opts – X_opts
obj_opts – obj_opts
flags – Optimization output flags
- Returns:
tab
- Returns:
pct_diff
- Returns:
location_flags
- Returns:
tablatex
- optimization.sensitivities.local_sens_both_obj_all_param(x0s, J0, p, params, p_val, param_idxs, lambdas, grads, hesses, num_constr)
Function
local_sens_both_obj_all_param()- Parameters:
x0s – x0s
J0 – J0
p – Parameter struct
params – params
p_val – p_val
param_idxs – param_idxs
lambdas – lambdas
grads – grads
hesses – hesses
num_constr – num_constr
- Returns:
par_x_star_par_p_norm
- Returns:
dJstar_dp_norm
- Returns:
dJdp_norm
- Returns:
par_J_par_p_norm
- Returns:
$\delta$ p norm
- optimization.sensitivities.gradient_mult_x0(p, b)
Function
gradient_mult_x0()- Parameters:
p – Parameter struct
b – Design variable bounds struct
- Returns:
Optimal design variables
- Returns:
objs
- Returns:
Optimization output flags
- Returns:
x0s
- Returns:
num_runs
- optimization.sensitivities.random_x0(b)
Function
random_x0()- Parameters:
b – Design variable bounds struct
- Returns:
Initial design variable vector
- Returns:
x0_struct
- optimization.sensitivities.param_sweep(filename_uuid)
Function
param_sweep()- Parameters:
filename_uuid – filename_uuid
- Returns:
ratios
- Returns:
Levelized cost of energy ($/kWh)
- Returns:
LCOE_nom
- Returns:
P_var
- Returns:
P_var_nom
- Returns:
param_names
- Returns:
num_DVs
- Returns:
X_LCOE
- Returns:
X_LCOE_nom
- Returns:
dvar_names
- Returns:
X_Pvar
- Returns:
X_Pvar_nom
- Returns:
slope_LCOE_norm
- Returns:
slope_Pvar_norm
- Returns:
slope_X_LCOE_norm
- Returns:
slope_X_Pvar_norm
- Returns:
wave energy period (s)
- Returns:
par_J_par_p_post_optim
- Returns:
dJ_star_dp_quad_post_optim
- Returns:
dJ_star_dp_lin_post_optim
- Returns:
dJstar_dp_re_optim
- Returns:
par_x_star_par_p_post_optim
- Returns:
par_x_star_par_p_re_optim
- Returns:
$\delta$ p change activity post optim
- Returns:
$\delta$ p change activity re optim
- Returns:
runtime_post_optim
- Returns:
runtime_re_optim
- optimization.sensitivities.delta_x(X, grad, hess, J, p, b, which_obj)
Function
delta_x()- param X:
Design variable vector
- param grad:
grad
- param hess:
hess
- param J:
Objective function value
- param p:
Parameter struct
- param b:
Design variable bounds struct
- param which_obj:
which_obj
- returns:
f
DELTA_X Use grad to estimate delta J for given delta x
- optimization.sensitivities.model_sens
[X_opt, ~, ~, ~, ~, ~, ~, val] = :func:`gradient_optim`(x0_input,p,b,1);
- optimization.sensitivities.location_sensitivity(p, b)
Function
location_sensitivity()- Parameters:
p – Parameter struct
b – Design variable bounds struct
- Returns:
flux
- Returns:
BW
- Returns:
storm
- Returns:
depths
- Returns:
locs
- Returns:
most_common_wave
- Returns:
X_opts
- Returns:
obj_opts
- Returns:
Optimization output flags
- Returns:
Figure handles